AP ${ }^{\circledR}$ BIOLOGY EQUATIONS AND FORMULAS

Statistical Analysis and Probability								
Mean					Standard Deviation			
$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$					$s=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}}$			
Standard Error of the Mean					Chi-Square			
$S E_{\bar{x}}=\frac{s}{\sqrt{n}}$					$\chi^{2}=\sum \frac{(o-e)^{2}}{e}$			
		Chi-Square Table						
$\begin{gathered} p \\ \text { value } \end{gathered}$	Degrees of Freedom							
	1	2	3	4	5	6	7	8
0.05	3.84	5.99	7.81	9.49	11.07	12.59	14.07	15.51
0.01	6.63	9.21	11.34	13.28	15.09	16.81	18.48	20.09

Laws of Probability

If A and B are mutually exclusive, then:

$$
P(\mathrm{~A} \text { or } \mathrm{B})=P(\mathrm{~A})+P(\mathrm{~B})
$$

If A and B are independent, then:

$$
P(\mathrm{~A} \text { and } \mathrm{B})=P(\mathrm{~A}) \times P(\mathrm{~B})
$$

Hardy-Weinberg Equations

$$
\begin{array}{ll}
p^{2}+2 p q+q^{2}=1 & p= \\
& \text { frequency of allele } 1 \text { in a } \\
p+q=1 & \\
& \text { population } \\
& q= \\
& \text { frequency of allele } 2 \text { in a } \\
& \text { population }
\end{array}
$$

$$
\begin{aligned}
\bar{x}= & \text { sample mean } \\
n= & \text { sample size } \\
s= & \text { sample standard deviation (i.e., the sample-based } \\
& \text { estimate of the standard deviation of the } \\
& \text { population) }
\end{aligned}
$$

$o=$ observed results
$e=$ expected results
$\Sigma=$ sum of all
Degrees of freedom are equal to the number of distinct possible outcomes minus one.

Metric Prefixes		
Factor	Prefix	Symbol
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{-1}	deci	d
10^{-2}	centi	c
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p

Mode $=$ value that occurs most frequently in a data set
Median $=$ middle value that separates the greater and lesser halves of a data set
Mean $=$ sum of all data points divided by number of data points
Range $=$ value obtained by subtracting the smallest observation (sample minimum) from the greatest (sample maximum)

